Telegram Group & Telegram Channel
🌳 Ветки в ML: как работает Random Forest

Если вы слышали про деревья решений, но не понимаете, зачем из них делают целый лес — вот схема, чтобы всё стало на свои места. Random Forest — это ансамбль из деревьев, который работает лучше, чем каждое по отдельности.

📦 Input: признаки (features)
🔁Output: предсказание (class или значение)

Step 1: Bootstrap-агрегация (bagging)
📦 Берём случайные подмножества данных
📦 Тренируем дерево на каждом из них
📦 Повторяем N раз

Step 2: Построение деревьев
📦 На каждой вершине выбираем случайный поднабор признаков
📦 Выбираем лучший сплит
📦 Растим дерево до конца (без обрезки)
📦 Повторяем для всех подмножеств

Step 3: Коллективное решение
📦 Все деревья делают предсказания
📦 Классификация: голосуем большинством
📦 Регрессия: считаем среднее

👉 Что важно:
— Каждое дерево «слепо» и нестабильно, но лес — устойчив
— Метод борется с переобучением
— Работает хорошо даже без тюнинга
— Обожают за explainability (важность признаков и out-of-the-box визуализацию)

🔵 Чтобы знать о машинном обучении все, забирайте наш курс «Базовые модели ML и приложения»

Proglib Academy
#буст
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/proglib_academy/2772
Create:
Last Update:

🌳 Ветки в ML: как работает Random Forest

Если вы слышали про деревья решений, но не понимаете, зачем из них делают целый лес — вот схема, чтобы всё стало на свои места. Random Forest — это ансамбль из деревьев, который работает лучше, чем каждое по отдельности.

📦 Input: признаки (features)
🔁Output: предсказание (class или значение)

Step 1: Bootstrap-агрегация (bagging)
📦 Берём случайные подмножества данных
📦 Тренируем дерево на каждом из них
📦 Повторяем N раз

Step 2: Построение деревьев
📦 На каждой вершине выбираем случайный поднабор признаков
📦 Выбираем лучший сплит
📦 Растим дерево до конца (без обрезки)
📦 Повторяем для всех подмножеств

Step 3: Коллективное решение
📦 Все деревья делают предсказания
📦 Классификация: голосуем большинством
📦 Регрессия: считаем среднее

👉 Что важно:
— Каждое дерево «слепо» и нестабильно, но лес — устойчив
— Метод борется с переобучением
— Работает хорошо даже без тюнинга
— Обожают за explainability (важность признаков и out-of-the-box визуализацию)

🔵 Чтобы знать о машинном обучении все, забирайте наш курс «Базовые модели ML и приложения»

Proglib Academy
#буст

BY Proglib.academy | IT-курсы


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/proglib_academy/2772

View MORE
Open in Telegram


Proglib academy | IT курсы Telegram | DID YOU KNOW?

Date: |

How Does Bitcoin Work?

Bitcoin is built on a distributed digital record called a blockchain. As the name implies, blockchain is a linked body of data, made up of units called blocks that contain information about each and every transaction, including date and time, total value, buyer and seller, and a unique identifying code for each exchange. Entries are strung together in chronological order, creating a digital chain of blocks. “Once a block is added to the blockchain, it becomes accessible to anyone who wishes to view it, acting as a public ledger of cryptocurrency transactions,” says Stacey Harris, consultant for Pelicoin, a network of cryptocurrency ATMs. Blockchain is decentralized, which means it’s not controlled by any one organization. “It’s like a Google Doc that anyone can work on,” says Buchi Okoro, CEO and co-founder of African cryptocurrency exchange Quidax. “Nobody owns it, but anyone who has a link can contribute to it. And as different people update it, your copy also gets updated.”

That growth environment will include rising inflation and interest rates. Those upward shifts naturally accompany healthy growth periods as the demand for resources, products and services rise. Importantly, the Federal Reserve has laid out the rationale for not interfering with that natural growth transition.It's not exactly a fad, but there is a widespread willingness to pay up for a growth story. Classic fundamental analysis takes a back seat. Even negative earnings are ignored. In fact, positive earnings seem to be a limiting measure, producing the question, "Is that all you've got?" The preference is a vision of untold riches when the exciting story plays out as expected.

Proglib academy | IT курсы from cn


Telegram Proglib.academy | IT-курсы
FROM USA